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INTRODUCTION

Mathematics has been around ever since man first learned to count on his fingers. The
Egyptian and Babylonian civilizations each had their own developments in numbering systems
and calculation techniques. It was the Greeks, though, who made the change that has shaped the
mathematical world ever since. They developed the discipline of rigorous proof. For 2500 years,
that has been the guiding principle in the world of mathematics. Greek mathematical texts
contain the first examples of logical proof. These are the first mathematical writings that have

completely retained their value to the present day.

This paper will serve as an introduction to Greek mathematics. I will use the
development of calculus to focus my study of the subject. This particular focus is intriguing
because calculus is one of the parts of mathematics least associated with the Greeks.
Traditionally, Newton and Leibniz ‘created’ calculus somewhere around 1700 C.E. What they
really did was begin to codify ideas whose seeds had been planted thousands of years earlier. I

will trace these ideas to their roots in classical antiquity.
HISTORICAL OVERVIEW

Greeks began studying math in an organized fashion sometime around 600 B.C.E.
Schools developed in two locations: Asia minor and southern Italy. The school in Asia minor
was founded by Thales, who is usually credited with being the first natural philosopher. There
are no great results that came from this school. However, several basic theorems are attributed to
Thales and his school. Proclus reports that Thales discovered that the circle is bisected by its

diameter (157.10 — 13), the base angles in an isosceles triangle are equal (250.22 — 251.2), and
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the intersection of two straight lines produces 2 sets of equal angles (299.1 - 5). Proclus also
tells us that Thales somehow used the equality of triangles to determine the distance of a ship
from shore (352.14 — 18). Many modern scholars have proposed methods he might have used.
Heath’s theory is that he stood on a tower and measured the angle of declination to the ship, then
turned around and found an object on the mainland at the same angle of declination. This
created 2 congruent triangles where the distance to the ship and to the fixed point on land was

equivalent (The Thirteen Elements of Euclid’s Elements, vol. i, 305).

The Pythagorean school arose in Southern Italy. According to Anatolius (cited by Heron)
they were the first to coin the term “paénpota,” (160.8 — 162.2). Brunes argues that the greatest
achievement of Pythagoras was to take mathematics out of the temple. Pythagoras spent a great
deal of time learning cult mysteries in Egypt. According to Brunes, computational methods and
geometric theorems were developed in religious contexts from very early times. The radical
change Pythagoras wrought was the de-mystification of math. Pythagoras did teach a philosophy
centered around the mystical connection numbers had to the universe. However, he did not ask
his followers to accept this connection on faith, instead they investigated numbers and shapes to
show by proof the intricacies of mathematics. Through this investigation, the followers of

Pythagoras laid the foundation for the logical pursuit of mathematics in the centuries to follow.

In the 5™ and 4™ centuries, Athens was the world’s intellectual center. Accordingly,
mathematical scholarship was focused there. Plato’s school was very active in the development
of mathematics. Specifically, they were interested in problems dealing with infinity and other
abstract mathematical concepts (Boyer). Competing with this group was Aristotle and his

followers. Aristotle defined a potential infinite and denied the actual, spatial infinite (Physics I’
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6,206a 9 — 16). This view of the infinite discouraged active study in that direction. Because
Aristotelian influence was dominant in mathematics until the Renaissance, this significantly

impeded the progress of calculus (Boyer).

There were many individuals from both schools whose work was notable, some of whom
will be mentioned below. All of their work was collected and categorized by the next character

in the drama of math, Euclid.
EUCLID

Euclid was a Greek mathematician who worked around 300 B.C.E (Heath, Thirteen
Elements of Euclid’s Elements, vol. i, 2). Very little is actually known about his life, though
there are countless legends surrounding him. Arab commentators started the tradition that his
birthplace was Tyre in Asia minor, but this is dubious because it is usually accompanied by
outrageous statements which further easternize his work. For instance, Thus Nasiraddin, the
Arabic translator of the Elements, gave Euclid the surname of Thusinus, making him out to be a
relative (4). Apparently this was a common practice of Arab translators. They described
Pythagoras as a pupil of Salomo and they made Aristotle an Egyptian. Medieval Christian
scholars thought Euclid’s birthplace was Megara. This however, was a result of confusion

between two people, because there was a 4™ century B.C.E. philosopher by the name of Euclid

of Megara.

One of the stories told about Euclid’s life comes from Stobaeus. It is one of countless
tails about Euclid which has no basis in fact. It reads as follows: “some one who had begun to

read geometry with Euclid, when he had learnt the first theorem, asked Euclid, ‘But what shall I



Katsenes 6

get by learning these things?” Euclid called his slave and said ‘Give him threepence, since he

must needs make profit out of what he learns,”” (Stobaeus, Extracts ii. 31.114 trans. Thomas).

It is most likely that Euclid received his education in Athens at the hands of Plato's pupils
(Heath, Thirteen Elements of Euclid’s Elements, vol. i, 2). His magnum opus is The Elements, a -
compendium of the mathematical knowledge of his day. Most of the material in it was not
created by Euclid but collected there by him. We are lucky that Euclid undertook this project

because most of the works he references are lost.

Most of our reliable information about Euclid and the sources he drew upon comes from
Proclus, his primary commentator. Proclus lived from 410 to 480 C.E. He was a neo-Platonist
who taught mathematics in Athens. He wrote many commentaries on Platonic dialogues, and one
commentary on Book I of Euclid's Elements (Heath, Thirteen Elements of Euclid’s Elements,
vol. 1, 29). Although he was separated by a vast gulf of time from the pre-Euclidean geometers
whom he discusses, his information is usually the most reliable. This is because he writes
honestly about his own sources and describes how he comes to his conclusions. For instance, to
place Euclid in time, he looks at references to him by Archimedes, and other sources who
connect Euclid to a Ptolomey. Since Euclid must then have lived before Archimedes, and during
the reign of a Ptolomey, it must have been during the reign of Ptolomey I, who is the only one to

reign before Archimedes was writing (Heath, Thirteen Elements of Euclid’s Elements, vol. i, 1).
PYTHAGOREAN CONTRIBUTIONS

The most famous product of Pythagorean study is, of course, the Pythagorean Theorem.

It relates the lengths of the legs of a right triangle to the length of the hypotenuse. Stated in
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modern mathematical terms, it reads a>+ b? = c¢* where a and b are the lengths of the legs and ¢ is
the length of the hypotenuse. How would this simple formula be understood by a classical
mathematician? To answer this question, we must first look at the divisions of mathematics in

the classical mind.

When Martianus Capella created his model for balanced education, De nuptiis Mercurii
et Philologiae, he included two books on mathematics, Geometry and Arithmetic. This division
was common across the entire classical world — with the exception of the Pythagorean order. The
order was based on a religion that bound the two realms of math together into the first grand
unified theory to explain the physical universe through mathematics (Boyer). This theorem could
be an attempt to bridge the gap between the realms of numbers and shapes. We do not know how
the Pythagoreans proved this theorem, but we do have several later methods. The most famous

proof is that offered by Euclid in Book I of The Elements.
EUCLID'S PROOF OF THE PYTHAGOREAN THEOREM

Let us examine the text of Euclid's proof in detail. Basically the he shows that the yellow
and blue squares are equal to the yellow and
blue areas in the largest square. As one might
expect, a discipline as formal as mathematical &
proof lends itself to structured, rigid language.
As he states the proposition he uses ring F

composition (ABCCBA form) to convey his

point clearly. While direct translation of this




Katsenes 8

form makes for a very confusing and ambiguous English sentence, the Greek is very specific and
clear. This unfamiliar syntax is one of the challenges of reading Euclid or any other Greek

mathematical text, even for a mathematician.

A second difficulty common to all mathematical texts is their specific vocabulary. The
Greeks had a system for talking about lines, points, and angles which is subtly different from
ours. We refer to the ‘legs’ of a right triangle, where Greeks would call them ‘ribs’ (TAevpag).
In fact, that term extends to the sides of all polygons. We call the side of the right triangle
opposite the right angle the hypotenuse. To talk about this side, Euclid must use a participial
phrase like, | THv 6pbf)v ywviav vroteivovon mAevpd. Clearly, our word ‘hypotenuse’

comes from UToTeiveLy, but we are able to use it without the awkward phrase.

Another difference in expression between Euclid and modern mathematicians is apparent
from the statement of the Pythagorean theorem. We state the theorem simply as a?+b’=c’.
Euclid cannot use this algebraic simplification for several reasons. First, he does not have the
equal sign or addition symbol, since symbolic algebra of this nature was a later Islamic
invention. Euclid was certainly certainly aware of multiplication and that the area of a square
could be found by multiplying the length of its side by itself. In fact, in Book VII (devoted to
what we call number theory), he defines a ‘square number’ (teTpdywvog ap1Onog) asa
number which is a smaller number multiplied by itself. To Euclid, and the classical world,
geometry is the purest form of mathematics. I suspect this is why he chooses to prove this

theorem by a strictly geometric method.

Euclid begins each proof with a statement of what he is trying to prove. Here, he states,

“In right triangles, the square from the rib stretching under the right angle is equal to the squares
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from the ribs surrounding the right angle.”! It is interesting to note that in Euclid's statement,
there is no mention of addition. This is a convention in Euclid and elsewhere. Addition is the

natural way to combine two areas, and therefore not specified.

The format which the proof takes is another Pythagorean innovation. It is called the
application of areas. It could legitimately be called the first step in the direction of modern
calculus. It was the first method of comparing dissimilar shapes. They broke the largest shape
down into components for comparison to other shapes. In this way, they could begin to show if
shapes were larger, smaller, or equal in size. The Pythagoreans actually refined this to the point
where they could reduce any straight-sided, closed figure to a triangle, and thus to a square
(Baron, 28). This was the Greek way of avoiding the connection between numbers and shapes.

Now we can simplify the whole process by comparing the numerical values for areas of shapes.
THE FLAW IN THE PYTHAGOREAN WORLD

This theorem proved to be the downfall of the Pythagorean philosophy because it is
evidence for the existence of what we call irrational numbers, called “unspeakable” (&Aoyog) by
the Pythagoreans (Danzig). Their system was based on integers, whole numbers like 1, 2, and 3.
They did not have fractions as we think of them today, but only as the ratio between two whole
numbers. For instance, the relationship between 15 and 5 would be 1/3. In this way, the
Pythagoreans had what we call the rational numbers, which include the integers and all fractions

made with them. However, when we consider a right triangle with both sides having length 1, we

quickly find that the hypotenuse is V2.

! Unless otherwise specified, all translations are my own. Heath translates this passage thus: “In right-angled'
triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right
angle.”
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The followers of Pythagoras were initially able to ignore this by simply assuming it was a
rational relationship in terms too large for them to calculate (Danzig, 100). Eventually, though
someone proved that the diagonal of a square is truly incommensurable with its side. This was
such a disturbing discovery in the Pythagorean world that, according to Proclus, the first
Pythagoreans to speak of it to outsiders died at sea as punishment (Danzig, 101). The proofis a
very elegant number theory exercise that was traditionally included in Book X of Euclid's
Elements. This proof was relegated to an appendix by August and Heibert, editors of the two
most current Greek editions of Euclid because it appears to have been added later as an
interpolation. Regardless, it is a fundamental proof taught in every basic analysis class to this

day.
PROOF OF THE IRRATIONALITY OF 2

Despite its apparent interpolation, this is still a fundamental proof for the study of
calculus, and it was known to the Greeks. So, for our purposes, whether or not Euclid actually
included it in the Elements is immaterial.

Due to an oddity in Euclid’s definition of &Aoyog (see the Glossary), he is not proving

that that V2 is irrational (by his definition, not ours), but merely incommensurable with a given

quantity (which is our definition of irrational). Instead he is proving that the two quantities are

GoVPPETPOG, or incommensurable. This means that there is no common into unit which both

- lengths can be broken down to a finite number.

Euclid sets this proof up by examining a square with its diagonal drawn in. The object of

the proof is to show that the diagonal of the square is incommensurable with the side of the
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square. The method is incredibly elegant, and never fails to amaze a student of mathematics.
The method of the proof is to show that for there to be a common measure between diagonal and

side, one of the side must be both even and odd.

This proof follows another Pythagorean technique, the reduction ad absurdum, or proof
by contradiction, a common proof tactic to this day. In the proof, the author creates the square
and its diagonal, and then creates a second a pair of segments in the same ratio to each other as
the square’s side and diagonal. This is an interesting step because it is generally omitted today.
The author, however, needs to create this intermediate step so that he can modify the new
segments geometrically, which he cannot do to the originals because they are part of his square.
Anything he proves about the created segments applies to the side and diagonal because he

created the new segments in their image.

In this proof, as in the Pythagorean Theorem proof, the author does not use the algebraic idea of
squaring, but rather the geometric. It is an interesting stylistic point that, in this proof, the author
omits the word for square. For instance, “7o amo tng I'A,” suffices to mean “the square upon the
side gamma-alpha.” This feature is consistent throughout the proof. The author also goes into
some detail to establish the legitimacy of comparisons between the created segments and the side
and diagonal. However, he only does this once, expecting the reader to repeat his steps the

second and third times they occur.

PARADOXES OF ZENO

No discussion of calculus in antiquity is complete without mention of the paradoxes of

Zeno. They were a set of problems that encouraged debate and thought about infinity more than
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any other single force.

Zeno was a philosopher and mathematician working about 460 B.C.E. (Baron, 21). He
presented four paradoxes to the world, each having to do with the concept of infinity, the
infinitesimal, and movement. There is much speculation as to the motivation behind the
paradoxes, but nobody can be sure whether Zeno was proposing them as a mere logical puzzle or
he was proposing them as a genuine mathematical paradox. In large part, this is because the

classical writings on the subject tend to be very bitter and recalcitrant (Baron, 21).

In two of the paradoxes, Dichotomy and Achilles, Zeno argues that if time and space are
infinitely divisible, motion is impossible. Basically, to get from point A to point B (in the upper
diagram), we must first traverse the distance between A and C (a point midway between A and
B). To get from A to C, one must pass through D (midway between A and C). These statements
repeat themselves ad infinitum. Therefore, to get to any point, we must first get halfway there,

and since there is always another

I I |
closer point to hit on the way, we I | I
A E D C B
never get anywhere. This is
I |
Zeno’s Dichotomy (Baron, 21). | | |
A B C D E

Achilles is the same
paradox seen in the other direction. If Achilles is chasing a tortoise, and the tortoise starts at B,
while Achilles starts at A (in the lower diagram), Achilles will never catch the tortoise. This is
because when Achilles reaches B, the tortoise is already at C, and when Achilles reaches C, it is

at D, etc (Baron, 21).
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Zeno’s other two paradoxes begin with the assumption that time and space are not
infinitely divisible. Instead, there is such a thing as a smallest unit of time, an instant, and a
smallest unit of space, a point. If an arrow is flying through the air, at a given instant, it must
occupy a certain point. Since it can only be in one place per instant, it cannot move in that

instant. Since the same logic holds for all instants, the arrow can never move (Baron 22).

The fourth paradox, the Stadium, is by far the least easily understood. The main source
for its description is its refutation in Aristotle’s Physics. The description of the paradox is
extremely antagonistic and confusing, which serves to make Aristotle’s counter-argument even
more appealing. There are two main scholarly explanations, both of which agree that it is a valid

paradox in which half of a given time is equal to the whole time (Thomas, vol. i, 374).

These paradoxes have been the subject of much discussion in the mathematical world to
this day. The Stadium has even been compared to the special theory of relativity, and does

indeed bear a certain resemblance (http://www.mathpages.com/rr/s3-07/3-07.htm).

SQUARING THE CIRCLE:

THE METHOD OF EXHAUSTION

The next step in the direction of calculus is traditionally attributed to Eudoxus. This pre-
Euclidean geometer of the platonic school devised a way to create a polygon with area equal to
that of a circle. This is another problem involving irrational numbers, because the area of a circle
is 7r?, and 7 is an irrational number (which cannot be represented accurately by a fraction).
Therefore, to make a polygon of equal area, the polygon must have a

side of irrational length. Eudoxus’ method involved inscribing a regular




Katsenes 14

polygon inside a circle and successively doubling the number of sides it had. By this “method of
exhaustion,” one could create a polygon with area “as near as desired” to the area of the circle.

This concept anticipates our modern concept of the limit, upon which calculus is based.
THE DIFFICULTY OF ORIGINS

The process described above is given in Book XII of Euclid’s Elements. This theorem is
said to have been proved by Hippocrates, but is most likely the work of Eudoxus (Heath). About
50 years after the Elements was written, Archimedes attributed two very similar theorems from
Book XII to Eudoxus, and based on that evidence, Eudoxus is credited with the method of
exhaustion. The canon of classical math texts is full of confusing attributions and references to

lost works. This method is particularly confused in its origins.

Antiphon is the first person attributed with the creation of this method. He was a sophist
contemporary to Socrates (middle 5" century B.C.E.). Aristotle in the Physics mentions that
Antiphon’s method for squaring the circle is sound (as opposed to another unnamed method) and
therefore not to be refuted. Commentators on Aristotle have expanded on this passage.
Themistius, a 4t century C.E. Greek commentator who also translated Aristotle into Arabic, says
that the unsound method Aristotle mentions was that of Hippocrates of Chios. He also describes
Antiphon’s method more fully as inscribing a series of triangles, which is logically equivalent to
the method in Euclid XII, 2. This version of Antiphon’s method is considered to be most
accurate because it is the earliest description we have (Heath). Simplicius, a 5™ century
comentator, objects to Antiphon’s method because it would never fully cover the circle. This is
true because the Greek mind did not conceive of this division being carried out to an infinite

degree as we would today.
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The next Greek credited with this method of squaring the circle is Bryson, a geometer
one generation after Antiphon (late 5™ to early 4™ century B.C.E.). Alexander of Aphrodisias, an
early 3" century C.E. commentator on Aristotle’s Sophistic Refutations, describes Bryson’s
method. It was similar to the method described in Euclid XII, 2 but instead approached the circle

with polygons circumscribed and inscribed.

For none of these methods do we have the original statement and proof. Only in the case
of Euxoxus’ method do we have any proof at all. The others only remain to us in scraps of
commentary written 700 - 1000 years after the fact. In fact, the ambiguity of these methods has
led some to characterize them as “a well-established algorithm of the differential calculus,”
(Boyer). The great leap which Newton and Leibniz made was to provide an explicit algorithm to

accomplish what Eudoxus and others had proposed was possible.
CONCLUSION

The world of Greek mathematics is rich in complexity and steeped in tradition. This
depth is certainly something that has been worthwhile for me to study over the course of this
year. I feel that I have found made some connections at least in my own mind which link my
two disciplines: classics and math. Looking back at some of the two thousand year old ideas
presented in this paper, which I did not encounter until reaching college, I appreciate the

classical heritage even better now than I did one year ago.
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Appendix One — Glossary
This glossary contains terms from Greek mathematics. This is a sampling of vocabulary
which I ran across in my studies. I chose the words by virtue of their interesting etymologies and
importance to calculus. All definitions are taken from Liddell and Scott. Quotations were
accessed either by the Perseus Project or the Loeb Classical Library. The Loeb compilation of

mathematical works (edited by Ivor Thomas) was particularly useful.

a&Aoyog
This word is Adyog with an alpha-privative. Thus it means the opposite of Adyoc. As the

opposite of the speech-based meanings of AGyog, it can mean speechless (Plato). As an opposite

to reason/explanation, it can mean unreasoning or unthinking. This definition is extended to to

refer to unthinking animals (Xenophon).
To counter the computation-based meanings of Adyoc, &Aoyog can mean without

reckoning or counting. Thucydides uses it to mean not counted-upon or unexpected. In
mathematics it means that two magnitudes are incommensurable. If two lines are

incommensurable, the ratio between them must be an irrational number (Democritus). Euclid

defines &oyog in a subtly different way from most (see below).
Because of the two meanings of dtAoyoc, Danzig is very perceptive when he translates the

Pythagorean &\oyov as the “unutterable.”” Literally the text referred to irrational numbers,

which were a great secret of the Pythagorean order.

? Danzig, Number, The Language of Science.
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Significant uses:

Democritus wrote an entire book entitled, “nepi dAdyov ypappudv,” (About Incommensurable

Lines).

Plato — Laws: 696e — “&AGyov oryf)g” — “Speechless silence,” or temperance, is a virtue to be

highly esteemed.

Xenophon — Hiero: 7.3 — “év 10ig dAGyoig {oig Epeleton” — Simonides tells Hiero that the

love of honour “is not implanted in unthinking animals.”

Thucydides — Histories: 6.46.2 — “kai dAoycrtepa” — This is an interesting passage over which

there is much disagreement. Everyone agrees that it has to do with an unexpected event, but

scholars disagree over what exactly that event is, and for whom it was unexpected.

Euclid — Elements: Book 10, Definition 3:
ToUtwv Unokeyévav deikvotar, 6t i) Tpotedeion) evBeia UnApyovoy VI
TAT)0eL Amerpot GOPETPOL TE Kl AGUPPETPOL ai pév prjket pévov, ai 8¢ kai
Suvdpet koheichm oDV 1) pév mpotedeica eVBela ONTT), Kol ol Ta0T) GUUPETPOL
elte prjket kal Suvape eite Suvaper pévov Onrai, ai 8¢ TadT Aodppetpot

doyot kaleioBwoav.

With these hypotheses, it is proved that there exist straight lines infinite in

multitude which are commensurable and incommensurable respectively, some in
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length only, and others in square also, with an assigned straight line. Let then the
assigned straight line be called rational, and those straight lines which are
commensurable with it, whether in length and in square or in square only,

rational, but those which are incommensurable with it irrational.>

This is a very interesting definition because it includes perfect square roots as rational
numbers. Euclid uses oUppetpog and dovppetpog to mean commensurable and

incommensurable. He then defines rationality as an extension upon commensurability. This

definition is reproduced in its entirety because it is essential to the study of calculus in antiquity.

ap1Opudg

This word has 13 main definitions and 6 subordinate meanings in Lidell, Scott, and
Jones. The basic meaning is number. With an ordinal, it can refer to a term in a sequence or to a
numeral (Euripides and Sextus Empiricus). With a genitive, it can mean amount (Xenophon). It
was also frequently used to describe a person’s station in society or relative worth (Homer). It
came to be associated with numbering or counting (Pindar).

Diophantus, the great Greek Algebraist used it as his word for abstract quantity. In other
scientific disciplines, it gained specialized meaning as well. In medicine, it was used to refer to
precise conditions under which an operation could be performed. In Astronomy, it came to refer

to the number of degrees a celestial body had traversed in a given period of time (or its speed).

Significant Uses:
Homer — Odyssey: 11.449 — “pet’ avdpav el apbpu@” — Agamemnon says that Telemachus

“takes his number among men.”

3 Heath’s translation.
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Pindar — Nemean Odes: 2.23 - “pdccwv appod” - The victories of Timodemus at home are

“past counting.”

Xenophon — Anabasis: 2.2.6 — “appog Mg 6800 fjv N\Bov €€ Epécov” — “The amount of road

they had taken from Ephesus was ...”

Euripides — Ion: 1014 — “6 §g0tepog §' apOpog v Aéyeis” — “The second one of which you

speak,” this is &p1OpoOg with an ordinal referring to a term in a sequence.

Sextus Empiricus — Adversus Mathematicos: 7.96 - “00000QJ0000000” — “The fourth

number,” here meaning the number 4.

Diophantus — Definition 2 — He defines 0000000 as “akf0og povadwv dopictev” or, “a

multitude of uncertain unit numbers.” We would say an uncertain multitude of units

ApTIOG

This word means complete, perfect, or fitted to its purpose. By applying complete to a
living creature, it came to mean full-grown. 1t also came to mean prepared or ready
(Herodotus). As an adverb, it means newly (Sophocles).

In mathematics, it means that a number is even. This sheds an interesting light on the

connections the ancients saw between numbers and religion. This topic is delved into in great
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detail in Martianus Capella’s chapter on Arithmetic.

Significant Uses:
Homer — Iliad: 14.92 — “&ptia. Balew” — Odysseus begs Agamemnon to “say things which are

fitting” of a man in his station.

Herodotus — Histories: 9.27 — “d&ptior neibeobor” — The Athenians feel that the enemies appear

to be “ready to be persuaded” to concede defeat.

Sophocles — Ajax: 678 — “érniotapo yap aptiog 6t — An angry Ajax “newly learns that” an

enemy is ceases to be an enemy when it interferes with another alliance.

Plato — Protagoras: 356e — Socrates invites questions Protagoras about a hypothetical situation in

which the choice between even and odd was to determine a man’s life or death.

Aoyog
This is another word who’s entry stretches on forever in any Greek lexicon. Liddell and

Scott list meanings varying from the Word of God, to an utterance, to computation, and finally to

proportion. 1t is this last meaning that is most important in the world of mathematics.
Adyog is the verbal noun of Méyw. It corresponds in meaning to two of the meanings of
Léyw: to count and to speak. The speech-based definitions are not relevant to mathematics, and

are not included here.

One main definition is a computation or counting. This usage was often associated with
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money, and was even used as a title for treasurer. It is also used to mean an account or
reckoning. With elements of communication and calculation, this straddles the line between the
speech and counting based definitions. Along with this meaning is the sense of esteem or value:
the sum total of something’s worth (Sophocles).

Another main computation-based meaning of AGyog is relation, correspondence, or

proportion (Aeschylus, Plato). Grammarians used it to mean a rule of language. In

mathematics, it is used to define a proportion (Euclid, Aristotle). Greek mathematicians could

only define a length, area, volume or other magnitude in relationship to a second one (line A has

length 4 times greater than line B).

Significant Uses:
Aeschylus — Seven against Thebes: 519 — “mpdg Mdyov 10D orjpatog” — Eteocles predicts that the

battle between mortals will go “according to the relationship between the signs” portrayed on

their shields.

Sophocles — Oedipus at Colonus: 1225 — “ur) pUvar TOV ATOVTO. VIKQ Moyov” — The chorus

laments about the woes of life, saying: “Not to be born exceeds every possible account/sum total

(of life).”

Plato uses the phrase &vi Adyov to mean proportionally in several instances. In Phaedo 1 10d,

the growing things of earth are proportionally beautiful. In Timaeus 37a, the three natures of the

soul are divided and combined proportionally.
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Aristotle — Metaphysics: 985 b32 — “1@v appoviav &v apiBpoic OpavTeg T& TAbn Kol Tolg
AOyoug” — The Pythagoreans saw that the “properties and proportions of musical scales” had to

do with numbers. Here the proportion is between the lengths of the strings stretched across one’s

lyre.

Euclid — Elements: Book 5, Definition 3 — “Adyog éoti 800 peyebv Opoyevav 1) Kata
mmAkoTta o oxéolg” — This is Euclid’s definition of Adyog: “A ratio is a sort of relation in

respect of size between two magnitudes of the same kind.””*

HOVAG
This is the feminine form of the adjective pévog, which has an extensive definition in

Liddell and Scott. Basically, it means alone or solitary. The feminine form can be used
substantively to mean a solitary female. However, it is more commonly used to mean unit or
monad. Mathematically, this is the abstract concept of a single unit with no set length. To prove
two things are commensurable, they must be able to broken into a finite number of pieces of this
unit size.

An interesting connection with the Pythagoreans exists. Thcir mystic

religious/philosophical system was based on numbers and elements. To them, this word was

connected with the element of fire. Movdg is the most basic mathematical unit, and it was the

center of the Pythagorean universe (Plutarch).

4 Heath’s translation.
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Significant Uses:

Euripides — Andromache: 855 — “povad’ épnpov” — Hermione has been abandoned on the shore

in “desolate solitude” without even an oar.

Plutarch — Life of Numa: 11.1 — “ko1 Tovto ‘Eotiav kahovot kot povada” — Numa built the
temple to Vesta in a circular shape to represent the shape of the universe, at the center of which

the Pythagoreans place the element of fire, “and call it Vesta and Unit.”

nEPLO0OG

This word means: beyond the regular number or size, prodigous. The word developed
both positive and negative connotations. It could mean extraordinary or remarkable (Euripides)
or superfluous (Xenophon).

In mathematics, this word is used to describe odd numbers. It can be used to describe the

ratio between lines, areas, or volumes. This word, along with &ptiog are very important in the

proof that 2 is incommensurable with a rational number.

Significant Uses:

Hesiod — Theogony: 599 — “nepiocd 8¢ dwpa 8édwkev” — Zeus gave “a huge number of gifts”

to Styx.
Euripides — Hippolytus: 948 — “nepiocog (v avr)p” — Theseus tells Hippolytus that he is a “man

apart,” who comes and goes with the gods.
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Xenophon — Memorabilia: 3.6.6 — “domdvog ... mepittag” — Socrates criticizes Glaucon’s fiscal

policies, asking if he will cut out “excess expenditures.”

TAELPA

The root definition of this word is 7ib, and it is usually found in the plural. Often it is
used in metonymy for the side of a person or animal. In mathematics, it came to mean the side
of a polygon or triangle. From its usage as a side, it was expanded to several concepts the
Greeks associated with sides. It came to mean a factor of a number because the Greeks
implicitly associated multiplication with the geometric operation of finding the area of a
rectangle. From factor it came to be used for only the factors of perfect squares or cubes: square

or cube roots. In at least one case, the word came to stand for an infinite line (see Archimedes

below).

Significant uses:
Homer — Iliad: 24.10 — “éxnt thevpag katokeipevog” — Achilles is “lying on his side” as he

grieves for Patroclus.

Herodotus — Histories: 4.64.2 — “Boog mhevpt)” — In a rare singular usage, the Scythians scalp

their first victims and scrape the brains off the skin with the “rib of a cow.”

Antiphon - First surviving mathematical usage of the word to mean side of a triangle (from the

5™ century B.C.E.).
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Plato - Frequently uses mhevpd to refer to sides of polygons. In Timaeus 53d, he refers to the

sides of a right triangle. In Theaetetus 148a, he uses it for the sides of a rectangle representing a

factor of a number.

Archimedes - About Spheres and Cylinders - Uses nkevpd to refer to the generator of a cone.

Technically, a cone is not a solid object like a sphere, but rather a surface. By intersecting the
cone with a plane, the conic sections (circle, parabola, hyperbola) are formed. The generator ofa
cone is the line that is rotated around a vertical axis to produce the surface of a cone. This
convention may or may not be followed by Apollonius of Perga, the greatest classical writer on

the conic sections.

CUUUETPOG
This is a rare word who’s main meaning is mathematical. It means commensurate. If

two segments, areas, or volumes can be expressed as multiples of the same base unit (novag),

they are commensurate. Our word symmetric comes from this, but does not mean the same

thing. Today, symmetric figures are identical to each other.
Our symmetric is closer to the way cUppetpog was used outside of mathematics. In

common parley, it meant coincident with, keeping even with, or the same as (Aeschylus).

Significant Uses:
Aeschylus — Libation Bearers: 230 — “cOppetpov Tp@ k&pa” — Orestes proves his identity to

Electra by showing that the lock of hair he gave her is “the same as the one on his head.”
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Plato — Theaetetus: 147d — “unjxer o0 cVppETpPOL 1) modwix” — Here Plato refers to a proof by
Theodorus which states that the sides of squares that have 3 ft* and 5 fi as their respective areas

are incommensurable with 1 foot. In other words, ﬁ and «/g are irrational.

Aristotle — Nicomachean Ethics: 1133b22 — “1oUT0 Yap mdvta motel oVppetpa” — He argues for

a set prices and exchange rates. This would make all goods “commensurable” and thereby their

relative worth would be firmly established.
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Appendix Two: Annotated Bibliography

Allman, George J. Greek Geometry: Thales to Euclid. Dublin: Dublin UP, 1889.

This book was a relatively unknown scholarly effort, published by the author's
school. It does not actually have a table of contents. It gives a detailed
explanation of the advancements of Thales, Pythagoras, Archytas, Eudoxus,
Menaechmus, Aristaeus, and Theaetetus.

Baron, Margaret E. "Greek Mathematics." History of Mathematics: Origins and Development of

the Calculus 1. Great Britain: Open UP, 1974. 1-51.
This is the first chapter in a textbook on the history of calculus. It covers many of
the same elements as this paper does. It is a very good textbook for a course. It
has good emphasis on primary sources, and is even meant to be accompianied by
an English translation of Euclid. In addition to the specifically calculus related
sections of the chapter, Baron spends quite a bit of time on a general introduction
to Greek math (basic proofs, counting methods, notations).This chapter serves as
a wonderful first treatment of the subject of Greek calculus studies, and provides
many avenues for further study.

Boyer, Carl B. The History of the Calculus and its Conceptual Development. New York, NY:

Dover, 1949,
This is the first math history book I've read, which was written by a
mathematician. It focused on the technical aspects of the development of
calculus. The first Chapter is entitled “Conceptions in Antiquity”. It was very
informative as a starting point for further research. It makes references to

classical and modern works which can be easily followed to find out more. A
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very valuable resource.

Brunes, Tons. The Secrets of Ancient Geometry. Trans. Charles M. Napier. Vol I & II.

Copenhagen, Sweeden: Rhodos, 1967.
These two volumes begin with information on the creation/discovery of
mathematics, but spend most of their pages on math’s application in architecture
and elsewhere. The author claims that mathematics was somehow the fiber that

held the ancient world together. He tries to find mystic connections and patterns
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from temple architecture to Platonic dialogues. The book does not deal with the
intellectual development in which I am interested.

Capella, Martianus. De Nuptiis Philologiae et Mercurii. Ed. Adolf Dick. Stuttgart, Germany: B.

G. Teubner, 1969.
This is a scholarly edition of Capella. All in Latin. The edition is well annotated
and legible, and basically the only one printed in the last century.

Capella, Martianus. The Marriage of Philology and Mercury. Trans. E L. Burge, Richard

Johnson, and William H. Stahl. New York: Columbia UP, 1977.
Books VI and VII of Capella are Geometry and Arithmetic. Book VI has
Geometry personified give a speech, in which she claims to be the source of all
things in the universe. She demands that Jove acknowledge that she was his
creator. Geometry proceeds to give a detailed account of the Earth's geography.
She describes its size and the positions of the continents. She talks about the
celestial bodies; which stars can be seen in what continents, and how that proves
the curvature of the Earth. Capella's discussion of the Earth's curvature is mostly

sound, although a bit confused, and severely lacking in proof. However, when he
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begins to describe Eratosthanes' calculation of the Earth's circumference, he
completely screws it up, showing his utter lack of mathematical understanding. In

the final few pages of the book, Geometry begins to speak about her own subject,

but basically, she refers the reader to Euclid.

The next book, Arithmetic is much more mathematically minded. It starts with a
description of the mystical description of numbers 1 through 10, common in the
classical world. This is mercifully brief, though, and most of the Arithmetic book
is actually devoted to what we call Number Theory today. The goddess discusses
divisibility, even and odd numberé and prime numbers in depth. Division is
approached in an very interesting way. Capella's system of math does not allow
for fractions in the same way we do. He discusses halves, thirds, and fourths, but
never does he mention three fourths. He never proves any of his assertions. He
will make a statement which requires mathematical proof, but simply follow it
with one example. As a math major, it made me twitch.

Chase, Arnold B. The Rhind Mathematical Papyrus. Oberlin, Ohio: Mathematical Association of

America, 1927.
This is an excellent edition of one of the most ancient mathematical texts around.
The Rhind Papyrus dates back 19 centuries before Christ. It describes how the
ancient Egyptians performed arithmetic, how they measured distances, and the
geometrical knowledge used to construct the Pyramids. They had an interesting
system to deal with fractions. They had no problem creating fractions with large
denominators, but they could have no number but one in the numerator. They

would use the hieratic script for the denominator (say, twenty-eight), but put a bar
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above it to indicate one twenty-eighth. So, to describe three fourths, they would
use one half plus one quarter. This book shows one of the earliest well developed
and codified mathematical systems at its height.

Danzig, Tobias. The Bequest of the Greeks. New York: Greenwood P, 1954.

This is a wonderfully written book about the methods and ideas that have actually
survived and influenced modern mathematics. It is intended for the intellectual
mathematician or the casually interested layman. The book describes the
formation and uses of methods and formulae which are still used routinely today.
It does not, however, give any useful information about the early foundations of
calculus.

Euclid. Euclidis Elementa. Ed. J L. Heiberg. Leipzig: Teubner, 1883.

This is the current standard scholarly edition of Euclid in the original Greek. I
used it via the Perseus project for most of my needs. However, Perseus does not
have Heiberg's appendices, which I needed to consult about the __ proof. Sincel
accessed this text in book form, I list it here, though I don't list any of the other
texts, which I accessed via Perseus or through Thomas's Loeb compendium.

Euclid. The Thirteen books of Euclid's Elements. Trans. Sir Thomas L. Heath. Vol. I-1II. New

York: Dover Publications, 1956.
Heath's translation is the agreed-upon standard for Euclid in English. It is the
translation which Perseus has available. Thomas, who transated and compiled the
Greek Math Loeb, was deeply indebted to Heath for consultation and assistance in
that work.

Greek Mathematical Works. Trans. Ivor Thomas. Vol. I. Cambridge, Massachusetts: Harvard
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UP, 1939.

Greek Mathematical Works. Trans. Ivor Thomas. Vol. II. Cambridge, Massachusetts:Harvard

UP, 1939.
This contains much of Euclid’s elements, as well as a vast group of other Greek
sources for mathematical knowledge. It will be most useful as a primary source
to refer to when I find references in modern works.

Heath, Thomas L. A Manual of Greek Mathematics. New York: Dover Publications, 1963.

This book is truly unique. It is basically all the practical mathematics the Greeks
knew translated into modern notation. It is a grand summary of the solution
methods the ancients used. It is a fantastic reference and very well organized.

Heath, Thomas L. Diophantus of Alexandria: A Study in the History of Greek Algebra. 2nd ed.

New York: Dover Publications, Inc., 1964.
This is the first, and best English translation of Diophantus. Heath is a giant in
the field of classical math history. This edition of Diophantus contains 120 pages
of introductory material on Diophantus and his mathematical methods. The
supplements also contain solutions by Fermat and Euler to questions Diophantus
posed. All together, this is a marvelous scholarly work in the field of algebra.

Klein, Jacob. Greek Mathematical Thought and the Origin of Algebra. Trans. Eva Brann.

Cambridge, MA: The M.L.T. P, 1969.
The book contains a good index of Greek mathematical terms, and a small
bibliography of classical and German language sources. This is a complete and
thorough analysis of the history of mathematical concepts relating to number.

Discussion starts with Plato and his concept of arithmos and logistike, both types
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of number without a clear separation between the two (theoretical vs.
calculation?). The discussion of number and it's meaning continues through to
Rennaisance times with Des Cartes.

Lasserre, Francois. The Birth of Mathematics in the Age of Plato. Trans. Helen Mortimer. New

York: Meridian Books, 1964.
This is actually a fairly general, basic book on the history of math. It focuses on
concepts and definitions and contrasts the different schools of thought at the time
of Plato. It does not go into depth in any area.

Neugebauer, O. The Exact Sciences in Antiquity. Providence: Brown University Press, 1957.

This book is a very comprehensive study of methods of computation in the
ancient world. It covers Egypt, Babylon, Greece, and the Hellenistic world. It
discusses methods useful in every discipleine from architecture and astronomy.

Smith, David E. Our Debt to Greece and Rome: Mathematics. New York: Cooper Square, 1963.

This book is a good overview of the major developments of Greek mathematics.
It reviews the differences between arithmos and logistic number. It does discuss
calculus, but only briefly and in very little detail.

Van der Waerden, B. L. Science Awakening. Trans. Arnold Dresden. New York: Oxford UP,

1961.
This is an attempt to document the beginnings of mathematical thought from
Pythagoras and Thales, to Euclid. This book focuses on the earlier
mathematicians, Thales and Pythagoras. We have no actual writings from these
two, which makes scholarship on their work increasingly difficult. Waerden

investigates the fairly recent scholarship on Egyptian and Babylonian math, and
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the theorems attributed to Thales and Pythagoras, comparing and contrasting. He
shows how they could have started from the pre-existing mathematical concepts

and worked their way to what we identify as their contributions today.




Matthew Katsenes
Final Report
Wednesday, May 05, 2004

From Infinity to Irrationality and Back Again:

An investigation of the classical foundations of the calculus.
Abstract:

This paper is an introduction to Greek math, focusing on the development of
calculus. It includes a brief overview of Greek mathematical history, and there is a fair
amount about Euclid himself, since he is our primary source for knowledge of Greek
math. Next, I begin to deal with the subject of calculus. They Pythagoreans were the
first to move in that direction, and their discovery of irrational numbers was a crucial
step. The Pythagorean theorem is the tool which first showed the existence of such
numbers, and I analyze Euclid’s proof. Then I analyze the proof of the irrationality of the
square root of two, which is found interpolated in Euclid.

At the end of the paper, I analyze two more mathematical concepts which spurred
on the development of calculus. First, there are the Paradoxes of Zeno. These each deal
with infinity and the infinitesimal, and provoked much thought and study which
eventually led to calculus. The second concept I touch on is the squaring of the circle.
The problem of comparing the areas of round objects with rectilinear objects was one
which puzzled the ancients because they did not understand that = is an irrational number,
which makes it impossible to compare the area of a square and circle using their methods.
Eudoxus came the closest with his method of exhaustion, which is strikingly similar to
modern integral calculus.

The last point about Eudoxus inspired me to close with a few words on the

difficulty of finding the true creator of any proof or concept. So few texts remain, and



those that do are full of contradictory remarks, good and bad proofs, and unmeasurable
biases.

After the paper, I have created a glossary of Greek mathematical terms. The
glossary includes some of the most interesting and challenging terms I encountered in my

study.

Method:

I began this project last fall with the vague intention of writing something about
classical mathematics to tie my two majors together. The first source I looked at was
Martianus Capella because he was the only Latin mathematical author I could find. His
material turned out to be of extremely poor quality mathematically. At this point I
realized I would have to turn to Greek sources.

The first Greek math source I found was the Loeb collection of mathematical
authors. This turned out to be an immensely useful source throughout my project. At
this point I began to turn to general surveys of math history and went to ask Dr. Dwyer
for ideas. He loaned me a book on the development of calculus which had an excellent
chapter on classical developments (Boyer). This became the focus of my paper.

I thought back to the proofs I had seen in mathematics classes, and went to my
real analysis book to see how that author began. Everywhere I looked, I realized that the
mathematical foundations of calculus lie in the continuity of the real number line. It
became a quest for me to find the proof of the discontinuity of the numbering system of

the Greeks (the rational numbers). I had seen it several times in a modern format, and



knew it existed in classical times. Eventually, it toék a trip to the University of Illinois
and a hunt through their library to find it, but it was an exciting read once I did find it.
These are the main points in the development of this paper. There was much
more research going on during all this. Finding calculus as my topic came only after
reading several books focusing on other aspects of math, including one interesting one on

the occult nature of math.

What I learned:

This project was an extensive learning process. It began with simply learning
where to look for resources on math history, classics, and everything in between. I
requested countless inter-library loans before I learned to properly skim the summary for
my particular interests.

From these basic research principles, I moved on into the world of math history. I
learned just how much of the scholarship in this field is not done in the English language.
I found many references to seminal German works in the field. This has influenced me
enough that in graduate school, I will be learning German because I know how useful it is
in the math world.

Once I had a topic chosen and focused research under way, I began to actually
formulate my paper. This was a chore unlike any I’d ever undertaken. Intimidated by the
entire process, I put it off for quite a while, but when I did start to write my Eta Sigma
Phi draft, I realized that I really had done a lot of research. The paper flowed naturally as
I poured out all the knowledge I had gained in my research. The task that seemed so

daunting was reduced to something manageable and I fought through it.
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I now would be much more comfortable taking on a project of this magnitude
again. I have learned a great deal about the general processes of research and writing,

which I know will benefit me in graduate school.
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Evaluation of Matthew Katsenes’ Project on an Investigation into the Classical
Foundations of Calculus

The bibliography demonstrates access to a variety of print resources on the history of
mathematics. One wonders whether additional materials might also be available on the internet.
The annotations are detailed and informative.

The glossary of important Greek mathematical terms is excellent and is, perhaps, the best and
most original portion of this paper. Even a non-mathematician benefits from reading the way
ancient mathematicians applied Greek words to mathematical concepts. Occasionally some
additional analysis of non-mathematical materials would have enhanced this discussion; for
example, more commentary like that on Euripides’s use of arithmos at Ion 1014 would have
been helpful. Such additions would be an appropriate follow-up for the next stage of this study,
were it to be undertaken.

An appendix providing information on the major mathematicians and mathematical works of
antiquity would have been an appropriate addition to this paper.

While the paper is generally well-written and demonstrates excellent use of the researched
materials, it contains a variety of stylistic flaws and typos which would undoubtedly have been
corrected in a revised version. Occasionally Greek characters appear only as boxes, (e.g., pg. 19).

The paper itself offers a sweeping overview and history of ancient mathematics with a focus on
several important ancient proofs. Unfortunately, the paper usually does not go much beyond
presentation of the proofs and offers little analysis from a modern mathematical point of view.
For example, the concluding paragraph on Zeno’s paradoxes states only that they “have been the
subject of much discussion in the mathematical world to this day.” The layperson would really
like to know what sorts of discussions these would be.

This study would make an excellent submission to the Eta Sigma Phi panel for CAMWS
Southern Section 2004. Perhaps a combination of one or two proofs with appropriate material
from the appendix would be effective.
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I think you should be proud of the way you combined your two academic interests in this project,
Matthew. You might even consider showing this work to your professors at the University of
Iowa to see what they think of it. Based upon the comments I have provided above, I think your
paper has earned a grade of A-. I would also evaluate your whole project, including research and
writing, as an A-.

While I continue to wish that you had been able to continue your study of the Classics into
graduate school, I have certainly enjoyed working with you for the past two years and wish you
all the best as you pursue your graduate studies in mathematics at the University of Iowa.

Si vales, valeo.

Thomas J. Sl?nkewicz
Minnie Billings Capron Professor of Classics

CELEBRATING 150 YEARS 1853-2003



Call for Papers

for presentation at the
Classical Association of the Middle West and South
Southern Section Meeting
November 4-6, 2004
in Winston-Salem, North Carolina
at the invitation of the Wake Forest University
and in cooperation with
the University of North Carolina-Greensboro and Davidson College

At the meeting of the Southern Section of CAMWS, Eta Sigma Phi will sponsor a panei of
papers presented by undergraduate members of Eta Sigma Phi. Members who will be
undergraduates in the fall (or who graduated in the spring of 2004) are invited to submit
papers for consideration, and five or six papers will be selected for presentation.

The papers will be judged anonymously, and the students whose papers are selected
for reading will receive $100 each to help cover expenses of attending the meeting. They
will also be given a one-year membership in CAMWS. Before submitting a paper, each
student should ensure that he or she will be able to obtain the additional funds—either
personally or through the institution, department, or chapter—to attend the meeting.

Requirements:

1. Papers should deal with some aspect of classical civilization or language. (Papers
written for classes are acceptable.)

2. Papers should be typed, double-spaced, and no longer than [5 minutes in length, or 20
minutes if audio-visuals are part of the presentation.

3. The names of the authors should not be on the papers.

4. Each submission should contain a cover sheet with the author’s name, address, phone
number, e-mail address, chapter, and institution. Those who will not be at their
institutions in June should also include summer information.

Deadline for receipt of papers: June 1, 2004

Send your papers to:
Thomas J. Sienkewicz, Executive Secretary
Eta Sigma Phi
Monmouth College
Monmouth, Illinois 61462
309-457-2371
Fax: 630-839-0664
toms@monm.edu



